Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Viruses ; 15(3)2023 02 23.
Article in English | MEDLINE | ID: covidwho-2250538

ABSTRACT

To facilitate interpretation of clinical SARS-CoV-2 anti-spike IgG analyses post-vaccination, 82 healthcare workers were followed through three vaccination-regimens: two regimens were comprised of two doses of BNT162b2 three or six weeks apart, followed by a dose of mRNA-vaccine, and in the other regimen, the first dose was replaced by ChAdOx1 nCov-19. After each dose, anti-spike IgG was compared between regimens. As many participants became infected, anti-spike IgG persistence was compared between infected and uninfected participants. Thirteen to twenty-one days after the first dose, seroconversion, and the median anti-spike IgG level in the ChAdOx1 group was significantly lower than in the BNT162b2 groups (23 versus 68 and 73 AU/mL). The second dose caused a significant increase in anti-spike IgG, but the median level was lower in the BNT162b2-short-interval group (280 AU/mL), compared to the BNT162b2-long-interval (1075 AU/mL) and ChAdOx1 (1160 AU/mL) group. After the third dose, all groups showed increases to similar anti-spike IgG levels (2075-2390 AU/mL). Over the next half year, anti-spike IgG levels declined significantly in all groups, but appeared to persist longer after post-vaccination infection. This is the first three-dose study with one dose of ChAdOx1. Despite initial differences, all vaccine regimens gave similarly high antibody levels and persistence after the third dose.


Subject(s)
BNT162 Vaccine , COVID-19 , Humans , COVID-19/prevention & control , COVID-19 Vaccines , ChAdOx1 nCoV-19 , Longitudinal Studies , SARS-CoV-2 , Vaccination , Antibodies, Viral , Health Personnel , Immunoglobulin G
2.
Vaccines (Basel) ; 11(2)2023 Feb 10.
Article in English | MEDLINE | ID: covidwho-2235372

ABSTRACT

The introduction of anti-SARS-CoV-2 vaccines in late 2020 substantially changed the pandemic picture, inducing effective protection in the population. However, individual variability was observed with different levels of cellular response and neutralizing antibodies. We report data on the impact of age, gender, and 16 single nucleotide polymorphisms (SNPs) of cytokine genes on the anti-SARS-CoV-2 IgG titers measured 31 and 105 days after administration of the second dose of BNT162b2 vaccine to 122 healthy subjects from the health care staff of the Palermo University Hospital, Italy. The higher titers at 31 days were measured in the younger subjects and in subjects bearing T-positive genotypes of IL-1R1 rs2234650 or the GG homozygous genotype of IL-6 rs1800795 SNP. T-positive genotypes are also significantly more common in subjects with higher titers at day 105. In addition, in this group of subjects, the frequency of the CT genotype of IL-4 rs2243250 is higher among those vaccinated with higher titers. Moreover, these SNPs and TNFA rs1800629 are differently distributed in a group of subjects that were found infected by SARS-CoV-2 at day 105 of evaluation. Finally, subjects that were found to be infected by SARS-CoV-2 at day 105 were significantly older than the uninfected subjects. Taken together, these data seem to suggest that age and polymorphisms of key cytokines, which regulate inflammation and humoral immune response, might influence the magnitude of the antibody response to vaccination with BNT162B2, prompting speculation about the possible benefit of a genetic background-based assessment of a personalized approach to the anti-COVID vaccination schedule.

3.
Virus Res ; 319: 198857, 2022 Oct 02.
Article in English | MEDLINE | ID: covidwho-1984221

ABSTRACT

With the COVID-19 pandemic globally, the ongoing threat of new challenges of mucosal infections was once again reminded human beings. Hence, access to the next-generation vaccine to elicit mucosal immunity is required to reduce virus shedding. SARS-CoV-2 retains a unique polybasic cleavage motif in its spike protein, recognized by the host furin protease. The proteolytic furin cleavage site at the junction of S1/S2 glycoprotein plays a key role in the pathogenesis of SARS-CoV-2. Here, we examined the protective immunity of a double-deleted PRRA/GTNGTKR motifs cold-adapted live-attenuated candidate vaccines as a called "KaraVac." using a hamster animal model of infected attenuated SARS-CoV-2. The KaraVac vaccinated hamsters were challenged against the wild-type (WT) SARS-CoV-2. No apparent bodyweight loss and histopathological lesions were observed in the hamsters. The establishment of sterilizing immunity was induced via stimulating a robust neutralizing antibody (NAb) response in a hamster model. Consequently, deletions in the spike sequence and inoculation into hamsters provide resistance to the subsequent challenge with WT SARS-CoV-2. We have suggested that deletion of the furin cleavage site and GTNGTKR motifs in the spike sequence attenuates the virus from the parental strain and can be used as a potent immunogen.


Subject(s)
COVID-19 , SARS-CoV-2 , Administration, Intranasal , Animals , Antibodies, Neutralizing , COVID-19/prevention & control , COVID-19 Vaccines , Furin/metabolism , Humans , Pandemics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus , Vaccines, Attenuated/genetics
4.
Front Immunol ; 13: 872047, 2022.
Article in English | MEDLINE | ID: covidwho-1855361

ABSTRACT

An effective COVID-19 vaccine against broad SARS-CoV-2 variants is still an unmet need. In the study, the vesicular stomatitis virus (VSV)-based vector was used to express the SARS-CoV-2 Spike protein to identify better vaccine designs. The replication-competent of the recombinant VSV-spike virus with C-terminal 19 amino acid truncation (SΔ19 Rep) was generated. A single dose of SΔ19 Rep intranasal vaccination is sufficient to induce protective immunity against SARS-CoV-2 infection in hamsters. All the clones isolated from the SΔ19 Rep virus contained R682G mutation located at the Furin cleavage site. An additional S813Y mutation close to the TMPRSS2 cleavage site was identified in some clones. The enzymatic processing of S protein was blocked by these mutations. The vaccination of the R682G-S813Y virus produced a high antibody response against S protein and a robust S protein-specific CD8+ T cell response. The vaccinated animals were protected from the lethal SARS-CoV-2 (delta variant) challenge. The S antigen with resistance to enzymatic processes by Furin and TMPRSS2 will provide better immunogenicity for vaccine design.


Subject(s)
COVID-19 , Furin , SARS-CoV-2 , Serine Endopeptidases , Animals , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines , Furin/genetics , Furin/metabolism , Humans , Immunity, Cellular , SARS-CoV-2/immunology , Serine Endopeptidases/genetics , Serine Endopeptidases/immunology , Spike Glycoprotein, Coronavirus/immunology
5.
Cell Rep ; 39(7): 110829, 2022 05 17.
Article in English | MEDLINE | ID: covidwho-1814236

ABSTRACT

We report that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Delta spike mutation P681R plays a key role in the Alpha-to-Delta variant replacement during the coronavirus disease 2019 (COVID-19) pandemic. Delta SARS-CoV-2 efficiently outcompetes the Alpha variant in human lung epithelial cells and primary human airway tissues. The Delta spike mutation P681R is located at a furin cleavage site that separates the spike 1 (S1) and S2 subunits. Reverting the P681R mutation to wild-type P681 significantly reduces the replication of the Delta variant to a level lower than the Alpha variant. Mechanistically, the Delta P681R mutation enhances the cleavage of the full-length spike to S1 and S2, which could improve cell-surface-mediated virus entry. In contrast, the Alpha spike also has a mutation at the same amino acid (P681H), but the cleavage of the Alpha spike is reduced compared with the Delta spike. Our results suggest P681R as a key mutation in enhancing Delta-variant replication via increased S1/S2 cleavage.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/genetics , Humans , Mutation/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics
6.
Innovation (Camb) ; 3(2): 100221, 2022 Mar 29.
Article in English | MEDLINE | ID: covidwho-1713028

ABSTRACT

The highly pathogenic and readily transmissible SARS-CoV-2 has caused a global coronavirus pandemic, urgently requiring effective countermeasures against its rapid expansion. All available vaccine platforms are being used to generate safe and effective COVID-19 vaccines. Here, we generated a live-attenuated candidate vaccine strain by serial passaging of a SARS-CoV-2 clinical isolate in Vero cells. Deep sequencing revealed the dynamic adaptation of SARS-CoV-2 in Vero cells, resulting in a stable clone with a deletion of seven amino acids (N679SPRRAR685) at the S1/S2 junction of the S protein (named VAS5). VAS5 showed significant attenuation of replication in multiple human cell lines, human airway epithelium organoids, and hACE2 mice. Viral fitness competition assays demonstrated that VAS5 showed specific tropism to Vero cells but decreased fitness in human cells compared with the parental virus. More importantly, a single intranasal injection of VAS5 elicited a high level of neutralizing antibodies and prevented SARS-CoV-2 infection in mice as well as close-contact transmission in golden Syrian hamsters. Structural and biochemical analysis revealed a stable and locked prefusion conformation of the S trimer of VAS5, which most resembles SARS-CoV-2-3Q-2P, an advanced vaccine immunogen (NVAX-CoV2373). Further systematic antigenic profiling and immunogenicity validation confirmed that the VAS5 S trimer presents an enhanced antigenic mimic of the wild-type S trimer. Our results not only provide a potent live-attenuated vaccine candidate against COVID-19 but also clarify the molecular and structural basis for the highly attenuated and super immunogenic phenotype of VAS5.

7.
Adv Exp Med Biol ; 1352: 1-13, 2021.
Article in English | MEDLINE | ID: covidwho-1669693

ABSTRACT

INTRODUCTION: A recent rapid outbreak of infection around the globe has been caused by a novel coronavirus, now known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which was first identified in December 2019 in Wuhan city of Hubei province, People's Republic of China. METHODS: We reviewed the currently available literature on coronaviruses. RESULTS: Coronaviruses are a group of enveloped viruses with non-segmented, single-stranded, and positive-sense RNA genomes. Although 13 variation sites in open reading frames have been identified among SARS-CoV-2 strains, no mutation has been observed so far in envelop protein. The origin and structural biology of SARS-CoV-2 in details are discussed. CONCLUSIONS: Origin and structural biology will help the researchers identify the virus's mechanism in the host and drug design. Currently, no clinical treatments or prevention strategies are available for any human coronavirus.


Subject(s)
COVID-19 , SARS-CoV-2 , Biology , China , Humans , Spike Glycoprotein, Coronavirus
8.
Cells ; 11(3)2022 01 27.
Article in English | MEDLINE | ID: covidwho-1662647

ABSTRACT

In this contribution, we report on the possibility that cryptococcal protease(s) could activate the SARS-CoV-2 spike (S) protein. The S protein is documented to have a unique four-amino-acid sequence (underlined, SPRRAR↓S) at the interface between the S1 and S2 sites, that serves as a cleavage site for the human protease, furin. We compared the biochemical efficiency of cryptococcal protease(s) and furin to mediate the proteolytic cleavage of the S1/S2 site in a fluorogenic peptide. We show that cryptococcal protease(s) processes this site in a manner comparable to the efficiency of furin (p > 0.581). We conclude the paper by discussing the impact of these findings in the context of a SARS-CoV-2 disease manifesting while there is an underlying cryptococcal infection.


Subject(s)
Aspartic Acid Proteases/metabolism , Bacterial Proteins/metabolism , Cryptococcus neoformans/enzymology , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Amino Acid Sequence , Aspartic Acid Proteases/genetics , Bacterial Proteins/genetics , Binding Sites , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/virology , Cryptococcus neoformans/genetics , Fluorescent Dyes/chemistry , Furin/genetics , Furin/metabolism , Humans , Pandemics , Peptides/chemistry , Peptides/metabolism , Proteolysis , SARS-CoV-2/physiology
9.
Pathogens ; 10(10)2021 Oct 06.
Article in English | MEDLINE | ID: covidwho-1463783

ABSTRACT

Nephropathic subjects with impaired immune responses show dramatically high infection rates of coronavirus disease 2019 (COVID-19). This work evaluated the ability to acquire and maintain protective antibodies over time in 26 hemodialysis patients and 21 kidney transplant recipients. The subjects were followed-up through quantitative determination of circulating SARS-CoV-2 S1/S2 IgG and neutralizing antibodies in the 6-month period after clinical and laboratory recovery. A group of 143 healthcare workers with no underlying chronic pathologies or renal diseases recovered from COVID was also evaluated. In both dialysis and transplanted patients, antibody titers reached a zenith around the 3rd month, and then a decline occurred on average between the 270th and 300th day. Immunocompromised patients who lost antibodies around the 6th month were more common than non-renal subjects, although the difference was not significant (38.5% vs. 26.6%). Considering the decay of antibody levels below the positivity threshold (15 AU/mL) as "failure", a progressive loss of immunisation was found in the overall population starting 6 months after recovery. A longer overall antibody persistence was observed in severe forms of COVID-19 (p = 0.0183), but within each group, given the small number of patients, the difference was not significant (dialysis: p = 0.0702; transplant: p = 0.1899). These data suggest that immunocompromised renal patients recovered from COVID-19 have weakened and heterogeneous humoral responses that tend to decay over time. Despite interindividual variability, an association emerged between antibody persistence and clinical severity, similar to the subjects with preserved immune function.

10.
Lab Med ; 53(2): 206-209, 2022 Mar 07.
Article in English | MEDLINE | ID: covidwho-1367036

ABSTRACT

Platelets have a role in vascular complications of COVID-19-related viral coagulopathy. Although immune-induced thrombocytopenia has been described mostly in moderate-to-severe COVID-19, the prognostic role of platelet count in COVID-19 is still controversial. Pseudothrombocytopenia has been reported to represent COVID-19-associated coagulopathy in critical illness, and transient EDTA-dependent pseudothrombocytopenia lasting less than 3 weeks was described in a patient with severe acute COVID-19 pneumonia. In our case study, EDTA-induced pseudothrombocytopenia was still present at 9 months after an initial SARS-CoV-2 virus infection in an apparently recovered 60 year old man. The persistence of antinucleocapside and antispike antibodies 9 months after the initial infection suggests that EDTA-induced pseudothrombocytopenia may be related to anti-SARS-CoV-2 IgG or IgM antibodies. We should acknowledge the possibility that pseudothrombocytopenia may also appear in some patients after seroconversion after the launch of large-scale vaccination programs.


Subject(s)
COVID-19 , Thrombocytopenia , COVID-19/complications , Edetic Acid , Humans , Immunoglobulin G , Immunoglobulin M , Male , Middle Aged , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Thrombocytopenia/chemically induced
11.
Glycobiology ; 30(12): 981-988, 2020 12 09.
Article in English | MEDLINE | ID: covidwho-1060393

ABSTRACT

The current emergence of the novel coronavirus pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) demands the development of new therapeutic strategies to prevent rapid progress of mortalities. The coronavirus spike (S) protein, which facilitates viral attachment, entry and membrane fusion is heavily glycosylated and plays a critical role in the elicitation of the host immune response. The spike protein is comprised of two protein subunits (S1 and S2), which together possess 22 potential N-glycosylation sites. Herein, we report the glycosylation mapping on spike protein subunits S1 and S2 expressed on human cells through high-resolution mass spectrometry. We have characterized the quantitative N-glycosylation profile on spike protein and interestingly, observed unexpected O-glycosylation modifications on the receptor-binding domain of spike protein subunit S1. Even though O-glycosylation has been predicted on the spike protein of SARS-CoV-2, this is the first report of experimental data for both the site of O-glycosylation and identity of the O-glycans attached on the subunit S1. Our data on the N- and O-glycosylation are strengthened by extensive manual interpretation of each glycopeptide spectra in addition to using bioinformatics tools to confirm the complexity of glycosylation in the spike protein. The elucidation of the glycan repertoire on the spike protein provides insights into the viral binding studies and more importantly, propels research toward the development of a suitable vaccine candidate.


Subject(s)
COVID-19/genetics , Polysaccharides/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/isolation & purification , COVID-19/pathology , COVID-19/virology , Coronavirus Infections , Humans , Pandemics , Polysaccharides/metabolism , Protein Binding/genetics , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics
12.
ACS Infect Dis ; 7(2): 264-272, 2021 02 12.
Article in English | MEDLINE | ID: covidwho-1023823

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uses its spike (S) protein to mediate viral entry into host cells. Cleavage of the S protein at the S1/S2 and/or S2' site(s) is associated with viral entry, which can occur at either the cell plasma membrane (early pathway) or the endosomal membrane (late pathway), depending on the cell type. Previous studies show that SARS-CoV-2 has a unique insert at the S1/S2 site that can be cleaved by furin, which appears to expand viral tropism to cells with suitable protease and receptor expression. Here, we utilize viral pseudoparticles and protease inhibitors to study the impact of the S1/S2 cleavage on infectivity. Our results demonstrate that S1/S2 cleavage is essential for early pathway entry into Calu-3 cells, a model lung epithelial cell line, but not for late pathway entry into Vero E6 cells, a model cell line. The S1/S2 cleavage was found to be processed by other proteases beyond furin. Using bioinformatic tools, we also analyze the presence of a furin S1/S2 site in related CoVs and offer thoughts on the origin of the insertion of the furin-like cleavage site in SARS-CoV-2.


Subject(s)
COVID-19/virology , Furin/metabolism , Peptide Hydrolases/metabolism , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Animals , Cell Line , Chlorocebus aethiops , HEK293 Cells , Humans , Models, Molecular , Peptide Hydrolases/chemistry , Proteolysis , SARS-CoV-2/chemistry , Vero Cells , Virus Internalization
13.
Mol Cell ; 78(4): 779-784.e5, 2020 05 21.
Article in English | MEDLINE | ID: covidwho-88548

ABSTRACT

The pandemic coronavirus SARS-CoV-2 threatens public health worldwide. The viral spike protein mediates SARS-CoV-2 entry into host cells and harbors a S1/S2 cleavage site containing multiple arginine residues (multibasic) not found in closely related animal coronaviruses. However, the role of this multibasic cleavage site in SARS-CoV-2 infection is unknown. Here, we report that the cellular protease furin cleaves the spike protein at the S1/S2 site and that cleavage is essential for S-protein-mediated cell-cell fusion and entry into human lung cells. Moreover, optimizing the S1/S2 site increased cell-cell, but not virus-cell, fusion, suggesting that the corresponding viral variants might exhibit increased cell-cell spread and potentially altered virulence. Our results suggest that acquisition of a S1/S2 multibasic cleavage site was essential for SARS-CoV-2 infection of humans and identify furin as a potential target for therapeutic intervention.


Subject(s)
Betacoronavirus/chemistry , Coronavirus Infections/virology , Pneumonia, Viral/virology , Spike Glycoprotein, Coronavirus/chemistry , Animals , Betacoronavirus/physiology , COVID-19 , Cell Line , Chlorocebus aethiops , Furin/chemistry , Furin/genetics , Furin/metabolism , Humans , Lung/metabolism , Lung/virology , Pandemics , SARS-CoV-2 , Serine Endopeptidases/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells , Virus Attachment
14.
Emerg Microbes Infect ; 9(1): 837-842, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-72297

ABSTRACT

The emergence of SARS-CoV-2 has led to the current global coronavirus pandemic and more than one million infections since December 2019. The exact origin of SARS-CoV-2 remains elusive, but the presence of a distinct motif in the S1/S2 junction region suggests the possible acquisition of cleavage site(s) in the spike protein that promoted cross-species transmission. Through plaque purification of Vero-E6 cultured SARS-CoV-2, we found a series of variants which contain 15-30-bp deletions (Del-mut) or point mutations respectively at the S1/S2 junction. Examination of the original clinical specimen from which the isolate was derived, and 26 additional SARS-CoV-2 positive clinical specimens, failed to detect these variants. Infection of hamsters shows that one of the variants (Del-mut-1) which carries deletion of 10 amino acids (30bp) does not cause the body weight loss or more severe pathological changes in the lungs that is associated with wild type virus infection. We suggest that the unique cleavage motif promoting SARS-CoV-2 infection in humans may be under strong selective pressure, given that replication in permissive Vero-E6 cells leads to the loss of this adaptive function. It would be important to screen the prevalence of these variants in asymptomatic infected cases. The potential of the Del-mut variants as an attenuated vaccine or laboratory tool should be evaluated.


Subject(s)
Coronavirus Infections/pathology , Disease Models, Animal , Mesocricetus , Pneumonia, Viral/pathology , Sequence Deletion , Severe acute respiratory syndrome-related coronavirus/genetics , Severe acute respiratory syndrome-related coronavirus/pathogenicity , Spike Glycoprotein, Coronavirus/genetics , Amino Acid Sequence , Animals , Base Sequence , COVID-19 , Cell Line , Chlorocebus aethiops , Coronavirus Infections/virology , Female , Host Specificity , Humans , Lung/pathology , Male , Pandemics , Pneumonia, Viral/virology , Severe acute respiratory syndrome-related coronavirus/growth & development , Severe acute respiratory syndrome-related coronavirus/isolation & purification , Spike Glycoprotein, Coronavirus/chemistry , Vero Cells , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL